Continuous-time Random Walks for the Numerical Solution of Stochastic Differential Equations
نویسندگان
چکیده
This paper introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids. These schemes are obtained by spatially discretizing the Kolmogorov equation associated with the SDE in such a way that the resulting semi-discrete equation generates a Markov jump process that can be realized exactly using a Monte Carlo method. In this construction the spatial increment of the approximation can be bounded uniformly in space, which guarantees that the schemes are numerically stable for both finite and long time simulation of SDEs. By directly analyzing the generator of the approximation, we prove that the approximation has a sharp stochastic Lyapunov function when applied to an SDE with a drift field that is locally Lipschitz continuous and weakly dissipative. We use this stochastic Lyapunov function to extend a local semimartingale representation of the approximation. This extension permits to analyze the complexity of the approximation. Using the theory of semigroups of linear operators on Banach spaces, we show that the approximation is (weakly) accurate in representing finite and infinite-time statistics, with an order of accuracy identical to that of its generator. The proofs are carried out in the context of both fixed and variable spatial step sizes. Theoretical and numerical studies confirm these statements, and provide evidence that these schemes have several advantages over standard methods based on time-discretization. In particular, they are accurate, eliminate nonphysical moves in simulating SDEs with boundaries (or confined domains), prevent exploding trajectories from occurring when simulating stiff SDEs, and solve first exit problems without time-interpolation errors. 2010 Mathematics Subject Classification. Primary 65C30; Secondary, 60J25, 60J75.
منابع مشابه
Numerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015